Herein, purely aliphatic intrinsically fluorescent terpolymers, i.e., 1 and 2, are synthesized through one-pot solution polymerization via N-H functionalized and multi C-C/C-N coupled in situ protrusion of fluorescent monomers using two nonemissive monomers. These scalable terpolymers are suitable for highly selective Fe(III) sensing, high-performance exclusion of Fe(III), logic function and the imaging of normal mammalian Madin-Darby canine kidney and human osteosarcoma cancer cell lines. The structures of terpolymers, in situ attachment of fluorescent monomers, clusteroluminescence, adsorption-mechanism, and cell-imaging abilities are understood via unadsorbed and/or adsorbed microstructural analyses using 1 H/ 13 C NMR, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy, atomic absorption spectroscopy, thermogravimetric analysis, high-resolution transmission electron microscopy, dynamic light scattering, fluorescence imaging, and fluorescence lifetime. The geometries, electronic structures, location of fluorophores, and singlet-singlet absorption and emission of terpolymers are examined using density functional theory (DFT) and time-dependent DFT. For the precise identification of fluorophores, transition from occupied natural transition orbitals (NTOs) to unoccupied NTOs is computed. For 1/2, limit of detection (LOD) values and adsorption capacities are 6.0 × 10 −7 /8.0 × 10 −7 m and 147.82/120.56 mg g −1 at pH i = 7.0 and 303 K, respectively. The overall properties of 1 are more advantageous compared to 2 in sensing, cell imaging, and adsorptive exclusion of Fe(III).