In order to prepare low-cost and environmentally friendly adsorbent materials for adsorption of heavy metal ion, two kinds of novel modified cottons (C-4-APD and C-2-APZ) were obtained by introducing 4-aminopyridin and 2-aminopyrazine into the surface of degreasing cotton, respectively, and used for the removal of Cr(VI) ions from aqueous solution. The two modified cottons were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), which confirmed the amino groups, pyridine groups and pyrazine groups grafted onto the surface of modified cottons. The maximum adsorption capacities of C-4-APD and C-2-APZ were 73.78 mg/g and 61.34 mg/g, respectively, at the optimum pH of 6 and an initial concentration of 200 mg/g. Kinetic and isotherm studies were carried out to investigate the adsorption behavior of the modified cottons on Cr(VI) ions. The results showed that the adsorption of Cr(VI) ions by modified cottons followed a pseudo-second-order kinetic model, the equilibrium data were in good agreement with the Langmuir isotherm model, and electrostatic and chemisorption may be the main adsorption mechanisms. The recovery and reuse of modified cotton were achieved by washing with 2 wt% thiourea-hydrochloric acid solution (0.5 mol/L concentration of HCl), and the adsorption capacities of C-4-APD and C-2-APZ were maintained above 90% and 80%, respectively, after six cycles.