In this experimental study, the impact of asphalt waste (AW) generated after the Kahramanmaraş earthquake on the geotechnical features of sandy-clay soils was examined. Afşin Elbistan fly ash (AEFA), which is widely produced in the region, was also added, and its effect was determined. After determining the engineering characteristics of the sandy-clay soil, mixtures were prepared by adding AW at the rates of 5,10,15,20% by weight. Mixtures were prepared by adding 5,10,15,15,20% AW at a constant rate of 15% AEFA. Atterberg limit, standard proctor, unconfined compressive strength (UCS), shear box, and California bearing ratio (CBR) tests were conducted on the samples. According to the results of the Proctor test, it is seen that the dry density increases and the optimum water content decreases as the proportion of AW mixed into soil increases. It was found that UCS improved with the addition of AW. It was observed that the internal friction angle increased with the addition of AW, and the cohesion increased with the addition of AEFA. As a result, it was determined that the use of AW and AEFA as 15% AW and 15% AEFA by dry weight in Sandy clay soil affects improving soil geotechnical properties. It is also concluded that the disposal of earthquake and industrial by-product waste will contribute to the environment and economy.