Abstract:The selection of fracture surface marking methods based on exploiting or altering the required fatigue loads is of much interest for many fatigue test programmes. This is particularly true when crack growth measurements during testing are not possible or insufficiently accurate. In such cases, post-test Quantitative Fractography (QF) of the fatigue crack growth may then be needed, and this can be made possible and/or greatly facilitated by fracture surface markers.Here, several examples of fatigue loadings that create fracture surface markings both naturally, as sometimes happens, and intentionally are presented and discussed. While these examples are from fatigue life tests of aircraft alloy specimens and components, particularly high strength aluminium alloys, under normal environmental conditions (air at ambient temperatures), it is probable that some of the fatigue load histories may provide fracture surface markings for other materials and in other environments.The advantages and disadvantages of the various intentional marking methods are detailed with a view to obtaining guidelines and procedures for optimising quantitative fractography of fatigue crack growth. These guidelines are presented in this paper. Theory and Operational Practice,
M. Bos (ed.), ICAF 2009, Bridging the Gap between