In this study, the oxidation behavior of Al coated NiCrAlY bondcoat is investigated. It is known that many methods are applied to improve the lifetime of bondcoat in thermal barrier coatings. Herein, the Al sputtering method is selected to increase the Al content, which does not change the structure of bondcoat. Thin Al film of ~2 µm was sputtered on the surface of bondcoat, which improved the oxidation resistance of NiCrAlY bondcoat. Experimental results showed that, after oxidation for 200 h at 1200 °C, the formation of a dense and continuous α-Al2O3/Cr2O3 multilayer was observed on the Al coated bondcoat surface. In contrast, a mixed oxides (NiO, Cr2O3 and spinel oxides) layer formed on the surface of the as-sprayed bondcoat samples. Results of the cyclic oxidation at 1050 °C within 204 h indicated that the Al sputtering method can improve the oxidation resistance of bondcoat. This study offers a potential way to prolong the lifetime of thermal barrier coatings and provides analysis of the oxidation mechanism.