Soil cracks affect the geotechnical characteristics of clay soils frequently used in engineered earth structures. In this work, numerical simulation and laboratory tests using Wenner- Schlumberger array of Electrical Resistivity Tomography (ERT) method are adopted to detect soil cracks in compacted clay soil. 3D numerical simulation showed that air-filled cracks have an anomalous high resistivity signature that can be differentiated from the background due to the high resistivity contrast between cracks and the surrounding soil. Depth, geometry, and extension of the simulated cracks are reasonably indicated. At the laboratory scale, quasi-3D ERT experiment was conducted. The results showed that soil resistivity is significantly affected by an artificially introduced crack as the crack forms a barrier that disturbs the flow of electricity in the soil. Similarly, depth, geometry, and extension of the crack are detected. Both numerical and experimental findings demonstrated that ERT method can effectively be used to identify cracking in clay soils. It is suggested that ERT, as a non invasive method, can be adopted with other traditional geotechnical methods for detecting cracks in clay soils.