Based on Euler-Bernoulli beam theory and a continuous stiffness beam model, the free vibration of rectangular-section beams made of functionally graded materials (FGMs) containing open edge cracks is studied. Assuming the material gradients follow exponential distribution along beam thickness direction, the conversion relation between the vibration governing equations of a FGM beam and that of an isotropic homogenous beam is deduced. A continuous function is used to characterize the bending stiffness of an edge cracked FGM beam. Thus, the cracked FGM beam is treated as an intact beam with continuously varying bending stiffness along its longitudinal direction. The characteristic equations of beams with different boundary conditions are obtained by transfer matrix method. To verify the validity of the proposed method, natural frequencies for intact and cracked FGM beams are calculated and compared with those obtained by three-dimensional finite element method (3D FEM) and available data in the literature. After that, further discussions are carried out to analyze the influences of crack depth, crack location, material property, and slenderness ratio on the natural frequencies of the cracked FGM beams.