2017
DOI: 10.1016/j.iatssr.2016.11.001
|View full text |Cite
|
Sign up to set email alerts
|

Crash rates analysis in China using a spatial panel model

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
1
0
4

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 10 publications
(6 citation statements)
references
References 28 publications
1
1
0
4
Order By: Relevance
“…The motivation for our choice is then essentially related to the aim of the present study to focus on spatial interaction effects and their relevance for the emergence of spillover across nearby geographical units. The existence of this problem is also confirmed in similar estimation settings by Elhorst (), Chakir and Le Gallo (), Kang et al (), and Soro et al ().…”
Section: Model Frameworksupporting
confidence: 66%
“…The motivation for our choice is then essentially related to the aim of the present study to focus on spatial interaction effects and their relevance for the emergence of spillover across nearby geographical units. The existence of this problem is also confirmed in similar estimation settings by Elhorst (), Chakir and Le Gallo (), Kang et al (), and Soro et al ().…”
Section: Model Frameworksupporting
confidence: 66%
“…The results also indicated that an increased length of roads with a speed limit below 30 km/h and a higher ratio of residents below the age of 15 are correlated with a lower traffic crash frequency, whereas a higher ratio of residents who moved to the TAZ, more vehicle kilometers traveled, and a greater number of access points with speed limit difference between side roads and the mainline above 30 km/h all increase the number of traffic crashes. Soro et al (2017) developed four models from panel data, which were the non-spatial model, the spatial autoregressive model, the spatial error model, and the fixed effect spatial autoregressive model with autoregressive disturbances (SARAR). Accident rate and injury rate were used as the dependent variables.…”
Section: Spatial Autoregressive Modelsmentioning
confidence: 99%
“…Nesta linha, esta revisão narrativa foi organizada sob dois enfoques: em primeiro lugar, foram abordados os estudos que analisaram o comportamento da taxa de mortalidade/fatalidade por acidentes de transporte terrestre e seus fatores associados (Van Beeck et al, 2000;Young e Bielinska-Kwapisz, 2006;Dadgar e Norström, 2017;Soro et al, 2017;Goel et al, 2018;Silva et al, 2015). Em segundo, apresentaram-se as pesquisas que avaliaram os fatores relacionados às internações hospitalares por essa causa externa (Soares e Barros, 2006; Nunes e Nascimento, 2010; Andrade e Jorge, 2017).…”
Section: Evidências Empíricas Sobre Os Fatores Associados Aos Acident...unclassified
“…Fatores Associados às Internações do Sistema Único de Saúde (SUS) por Acidentes de Transporte Terrestre no Paraná: Análise pelo Modelo de Painel 417 Soro et al (2017) analisaram as taxas de acidentes e de lesões dos acidentes de transporte terrestre, fatais e não fatais, de 31 regiões administrativas (divisões de nível provincial) da China continental, entre 2004 e 2013. Para isso, usaram o modelo de regressão de painel espacial com efeitos fixos.…”
Section: Evidências Empíricas Sobre Os Fatores Associados Aos Acident...unclassified
See 1 more Smart Citation