In this paper, we introduce the design of an advanced high-performance interconnect architecture for supercomputers. In the first part of the paper, we consider the first generation high-performance Angara interconnect (Angara G1). The Angara interconnect is based on the router ASIC, which supports a 4D torus topology, a deterministic and an adaptive routing, and has the hardware support of the RDMA technology. The interface with a processor unit is PCI Express. The Angara G1 interconnect has an extremely low communication latency of 850 ns using the MPI library, as well as a link bandwidth of 75 Gbps. In the paper, we present the scalability performance results of the considered application problems on the supercomputers equipped with the Angara G1 interconnect. In the second part of the paper, using research results and experience we present the architecture of the advanced interconnect for supercomputers (G2). The G2 architecture supports 6D torus topology, the advanced deterministic and zone adaptive routing algorithms, and a low-level interconnect operations including acknowledgments and notifications. G2 includes support for exceptions, performance counters, and SR-IOV virtualization. A G2 hardware is planned in the form factor of a 32-port switch with the QSFP-DD connectors and a two-port low profile PCI Express adapter. The switches can be combined to 4D torus topology. We show the performance evaluation of an experimental FPGA prototype, which confirm the possibility of implementing the proposed advanced high performance interconnect architecture.