The potential connection between trends of within species variation, such as those of allometric change in morphology, and phylogenetic divergence has been a central topic in evolutionary biology for more than a century, including in the context of human evolution. In this study, I focus on size‐related shape change in craniofacial proportions using a sample of more than 3200 adult Old World monkeys belonging to 78 species, of which 2942 specimens of 51 species are selected for the analysis. Using geometric morphometrics, I assess whether the divergence in the direction of static allometries increases in relation to phyletic differences. Because both small samples and taxonomic sampling may bias the results, I explore the sensitivity of the main analyses to the inclusion of more or less taxa depending on the choice of a threshold for the minimum sample size of a species. To better understand the impact of sampling error, I also use randomized subsampling experiments in the largest species samples. The study shows that static allometries vary broadly in directions without any evident phylogenetic signal. This variation is much larger than previously found in ontogenetic trajectories of Old World monkeys, but the conclusion of no congruence with phylogenetic divergence is the same. Yet, the effect of sampling error clearly contributes to inaccuracies and tends to magnify the differences in allometric change. Thus, morphometric research at the boundary between micro‐ and macro‐evolution in primates, and more generally in mammals, critically needs very large and representative samples. Besides sampling error, I suggest other non‐mutually exclusive explanations for the lack of correspondence between allometric and phylogenetic divergence in Old World monkeys, and also discuss why directions might be more variable in static compared to ontogenetic trajectories. Even if allometric variation may be a poor source of information in relation to phylogeny, the evolution of allometry is a fascinating subject and the study of size‐related shape changes remains a fundamental piece of the puzzle to understand morphological variation within and between species in primates and other animals.