The P2Y 14 receptor was initially identified as a G protein-coupled receptor activated by UDP-glucose and other nucleotide sugars. We have developed several cell lines that stably express the human P2Y 14 receptor, allowing facile examination of its coupling to native G i family G proteins and their associated downstream signaling pathways (J Pharmacol Exp Ther 330: [162][163][164][165][166][167][168] 2009). In the current study, we examined P2Y 14 receptor-dependent inhibition of cyclic AMP accumulation in human embryonic kidney (HEK) 293, C6 glioma, and Chinese hamster ovary (CHO) cells stably expressing this receptor. Not only was the human P2Y 14 receptor activated by UDP-glucose, but it also was activated by UDP. The apparent efficacies of UDP and UDP-glucose were similar, and the EC 50 values (74, 33, and 29 nM) for UDP-dependent activation of the P2Y 14 receptor in HEK293, CHO, and C6 glioma cells, respectively, were similar to the EC 50 values (323, 132, and 72 nM) observed for UDP-glucose. UDP and UDP-glucose also stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in P2Y 14 receptor-expressing HEK293 cells but not in wild-type HEK293 cells. A series of analogs of UDP were potent P2Y 14 receptor agonists, but the naturally occurring nucleoside diphosphates, CDP, GDP, and ADP exhibited agonist potencies over 100-fold less than that observed with UDP. Two UDP analogs were identified that selectively activate the P2Y 14 receptor over the UDP-activated P2Y 6 receptor, and these molecules stimulated phosphorylation of ERK1/2 in differentiated human HL-60 promyeloleukemia cells, which natively express the P2Y 14 receptor but had no effect in wild-type HL-60 cells, which do not express the receptor. We conclude that UDP is an important cognate agonist of the human P2Y 14 receptor.The metabotropic P2Y receptors include a subgroup of five receptors, the P2Y 1 , P2Y 2 , P2Y 4 , P2Y 6 , and P2Y 11 receptors, that primarily signal through G q -activated signaling pathways and a subgroup of three receptors, the P2Y 12 , P2Y 13 , and P2Y 14 receptors, that primarily signal by activating heterotrimeric G proteins of the G i family (Abbracchio et al., 2006;Burnstock, 2007). The human P2Y 1 , P2Y 11 , P2Y 12 , and P2Y 13 receptors are activated by adenine nucleotides. The human P2Y 4 and P2Y 6 receptors are activated by uridine nucleotides, and the P2Y 2 receptor is activated by both ATP and UTP.