2011 Seventh International Conference on Natural Computation 2011
DOI: 10.1109/icnc.2011.6022386
|View full text |Cite
|
Sign up to set email alerts
|

Credit quality assessments using manifold based semi-supervised discriminant analysis and support vector machines

Abstract: Due to the large scale of financial data in credit quality forecasting, dimensionality reduction is a key step to enhance classifier performance. By using manifold based semisupervised discriminant analysis (SSDA) and support vector machines, this study develops a novel prediction system for credit quality assessment, where SSDA makes efficient use of labeled and unlabeled (testing) data points to gain a perfect low dimensional approximation of data manifold and simultaneously maintain the discriminating power… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?