Credit scoring using neural networks and SURE posterior probability calibration
Matthieu Garcin,
Samuel Stéphan
Abstract:In this article we compare the performances of a logistic regression and a feed forward neural network for credit scoring purposes. Our results show that the logistic regression gives quite good results on the dataset and the neural network can improve a little the performance. We also consider different sets of features in order to assess their importance in terms of prediction accuracy. We found that temporal features (i.e. repeated measures over time) can be an important source of information resulting in a… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.