Despite its excellent elemental properties, lightweight nature and good alloying potential, scandium has received relatively little attention in the manufacturing community. The abundance of scandium in the Earth's crust is quite high. It is more abundant than silver, cobalt, lead and tin. But, because scandium is so well dispersed in the lithosphere, it is notoriously difficult to extract in commercial quantities-hence low market availability and high cost. Scandium metallurgy is still a largely unexplored field-but progress is being made. This review aims to summarise advances in scandium metallurgical research over the last decade. The use of scandium as a conventional minor addition to alloys, largely in structural applications, is described. Also, more futuristic functional applications are discussed where details of crystal structures and peculiar symmetries are often of major importance. This review also includes data obtained from more obscure sources (especially Russian publications) which are much less accessible to the wider community. It is clear that more fundamental research is required to elevate the status of scandium from a laboratorybased curiosity to a mainstream alloying element. This is largely uncharted territory. There is much to be discovered.