Early in fatigue life, fatigue cracks are often initiated at persistent slip bands (PSBs), which play the main role in surface evolution when the components are subjected to cyclic loading. Therefore, this paper aims to study the behavior of the surface development of medium-carbon steel, specifically 42CrMo4 (SAE 4140). Tests were conducted using tension–compression fatigue testing with stress amplitudes set at 30%, 40%, and 50% of the ultimate tensile strength (UTS); a load ratio of R = −1; and a frequency of f = 10 Hz. The ultimate number of test cycles was 2 × 105. The fatigue test specimens with as-machined surface quality (Ra < 100 nm) were tested on a servo-hydraulic push–pull testing machine, and the tests were interrupted a few times to bring the specimens out for surface measuring with a confocal microscope. The linear roughness values of the arithmetic mean deviation (Ra), maximum height (Rz), maximum profile peak height (Rp), and maximum profile valley depth (Rv) were investigated and further used to determine the roughness evolution during cyclic loading (REC) by analyzing the inclinations of the fitting curves of roughness and number-of-cycles diagrams. REC could then be used to estimate and classify the fatigue lifetime.