Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Research on landslide displacement prediction based on interferometric synthetic aperture radar (InSAR) deformation data involves two main issues. First, InSAR can provide only one-dimensional deformation data along the satellite’s line of sight (LOS), which cannot truly reflect the deformation of the landslide body in the downward direction along the slope. Second, the use of a single prediction model does not adequately account for both long-term and local changes in landslide displacement, affecting the accuracy of the predictions. To address this, in this study, Long Short-Term Memory networks (LSTM) and temporal convolutional network (TCN) models are combined to construct a method (LSTM-TCN) of landslide displacement prediction. This method can consider the long-term and localized changes in landslide displacement. The method is first based on InSAR technology to obtain surface deformation. The deformation of the landslide is subsequently computed in the downward direction along the slope to obtain the landslide displacement time series data. Next, the LSTM-TCN is used for landslide displacement prediction. Finally, the mean absolute error (MAE), root mean square error (RMSE) and coefficient of determination (R2) are used to evaluate the performance of the model. The experiment is conducted on the Xiao Andong landslide in Anshi village, Fengqing County, Lincang City, Yunnan Province, China. The LSTM-TCN model achieves an R2 of 0.75, an RMSE of 0.43 cm, and an MAE of 0.36 cm. Compared with the individual LSTM and TCN models, the LSTM-TCN model exhibits the highest prediction accuracy and the smallest prediction error, which is closer to the true result that in the other models. These results demonstrate that the combined LSTM-TCN model effectively captures the complex features and long-term trends in landslide displacement data, significantly enhancing the accuracy of predictions.
Research on landslide displacement prediction based on interferometric synthetic aperture radar (InSAR) deformation data involves two main issues. First, InSAR can provide only one-dimensional deformation data along the satellite’s line of sight (LOS), which cannot truly reflect the deformation of the landslide body in the downward direction along the slope. Second, the use of a single prediction model does not adequately account for both long-term and local changes in landslide displacement, affecting the accuracy of the predictions. To address this, in this study, Long Short-Term Memory networks (LSTM) and temporal convolutional network (TCN) models are combined to construct a method (LSTM-TCN) of landslide displacement prediction. This method can consider the long-term and localized changes in landslide displacement. The method is first based on InSAR technology to obtain surface deformation. The deformation of the landslide is subsequently computed in the downward direction along the slope to obtain the landslide displacement time series data. Next, the LSTM-TCN is used for landslide displacement prediction. Finally, the mean absolute error (MAE), root mean square error (RMSE) and coefficient of determination (R2) are used to evaluate the performance of the model. The experiment is conducted on the Xiao Andong landslide in Anshi village, Fengqing County, Lincang City, Yunnan Province, China. The LSTM-TCN model achieves an R2 of 0.75, an RMSE of 0.43 cm, and an MAE of 0.36 cm. Compared with the individual LSTM and TCN models, the LSTM-TCN model exhibits the highest prediction accuracy and the smallest prediction error, which is closer to the true result that in the other models. These results demonstrate that the combined LSTM-TCN model effectively captures the complex features and long-term trends in landslide displacement data, significantly enhancing the accuracy of predictions.
SBAS-InSAR technology is effective in obtaining surface deformation information and is widely used in monitoring landslides and mining subsidence. However, SBAS-InSAR technology is susceptible to various errors, including atmospheric, orbital, and phase unwrapping errors. These multiple errors pose significant challenges to precise deformation monitoring over large areas. This paper examines the spatial characteristics of these errors and introduces a spatially constrained SBAS-InSAR method, termed SSBAS-InSAR, which enhances the accuracy of wide-area surface deformation monitoring. The method employs multiple stable ground points to create a control network that limits the propagation of multiple types of errors in the interferometric unwrapped data, thereby reducing the impact of long-wavelength signals on local deformation measurements. The proposed method was applied to Sentinel-1 data from parts of Jining, China. The results indicate that, compared to the traditional SBAS-InSAR method, the SSBAS-InSAR method significantly reduced phase closure errors, deformation rate standard deviations, and phase residues, improved temporal coherence, and provided a clearer representation of deformation in time-series curves. This is crucial for studying surface deformation trends and patterns and for preventing related disasters.
Time-series Interferometric Synthetic Aperture Radar (InSAR) technology, renowned for its high-precision, wide coverage, and all-weather capabilities, has become an essential tool for Earth observation. However, the quality of the interferometric baseline network significantly influences the monitoring accuracy of InSAR technology. Therefore, optimizing the interferometric baseline is crucial for enhancing InSAR’s monitoring accuracy. Surface vegetation changes can disrupt the coherence between SAR images, introducing incoherent noise into interferograms and reducing InSAR’s monitoring accuracy. To address this issue, we propose and validate an optimization method for the InSAR baseline that considers changes in vegetation coverage (OM-InSAR-BCCVC) in the Yuanmou dry-hot valley. Initially, based on the imaging times of SAR image pairs, we categorize all interferometric image pairs into those captured during months of high vegetation coverage and those from months of low vegetation coverage. We then remove the image pairs with coherence coefficients below the category average. Using the Small Baseline Subset InSAR (SBAS-InSAR) technique, we retrieve surface deformation information in the Yuanmou dry-hot valley. Landslide identification is subsequently verified using optical remote sensing images. The results show that significant seasonal changes in vegetation coverage in the Yuanmou dry-hot valley lead to noticeable seasonal variations in InSAR coherence, with the lowest coherence in July, August, and September, and the highest in January, February, and December. The average coherence threshold method is limited in this context, resulting in discontinuities in the interferometric baseline network. Compared with methods without baseline optimization, the interferometric map ratio improved by 17.5% overall after applying the OM-InSAR-BCCVC method, and the overall inversion error RMSE decreased by 0.5 rad. From January 2021 to May 2023, the radar line of sight (LOS) surface deformation rate in the Yuanmou dry-hot valley, obtained after atmospheric correction by GACOS, baseline optimization, and geometric distortion region masking, ranged from −73.87 mm/year to 127.35 mm/year. We identified fifteen landslides and potential landslide sites, primarily located in the northern part of the Yuanmou dry-hot valley, with maximum subsidence exceeding 100 mm at two notable points. The OM-InSAR-BCCVC method effectively reduces incoherent noise caused by vegetation coverage changes, thereby improving the monitoring accuracy of InSAR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.