Our fascination with dinosaur brains and their capabilities essentially began with the first dinosaur discovery. The history of this study is a useful reflection of palaeoneurology as a whole and its relationship to a more inclusive evolutionary neuroscience. I argue that this relationship is imbued with high heuristic potential, but one whose realization requires overcoming certain constraints. These constraints include the need for a stable phylogenetic framework, methods for efficient and precise endocast construction, and fossil researchers who are steeped in a neuroscience perspective. The progress that has already been made in these areas sets the stage for a more mature palaeoneurology—not only one capable of being informed by neuroscience discoveries but one that drives such discoveries. I draw from work on the size, shape, behavioural correlates and developmental role of the dinosaur brain to outline current advances in dinosaur palaeoneurology. My examples largely are taken from theropods and centre on questions related to the origin of birds and their unique locomotory capabilities. The hope, however, is that these exemplify the potential for study in other dinosaur groups, and for utilizing the dinosaur–bird lineage as a parallel model on a par with mammals for studying encephalization.