Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
U-Pb ages were obtained from detrital zircon grains from Proterozoic, Ordovician, Devonian, Pennsylvanian, and Cretaceous clastic sedimentary rocks in southern New Mexico and are compared to previously published data from Proterozoic, Cambrian, Permian, and other Cretaceous strata. This provides the first combined data set from most of the known pre-Cenozoic clastic formations in southern New Mexico, albeit in a reconnaissance fashion. Proterozoic quartzite, conglomerate, and lithic sandstone yield mostly 1.65-Ga zircon ages that were derived from the Mazatzal province, with minor 1.8–1.7-Ga zircon ages from the Yavapai province. The Cambrian–Ordovician Bliss Sandstone is dominated by Grenville-age grains and Cambrian grains inferred to be locally derived. Newly acquired ages from the Ordovician Cable Canyon Sandstone are dominated by 1.7–1.6-Ga Mazatzal province zircon grains, whereas new data from the Devonian Percha Shale indicate subequal contributions from 1.7–1.6-Ga and ~1.4-Ga sources, along with 1.8–1.7-Ga zircon ages. Both of these formations likely had mainly distal sources as the Precambrian basement in the region was largely buried by older Paleozoic strata. New data from a sandstone in the Pennsylvanian La Tuna Formation show mostly Yavapai grains and minor Paleozoic zircon grains, including Cambrian zircon grains sourced from the nearby Florida Mountains landmass postulated to have been exposed during Pennsylvanian time. The Permian ‘Abo tongue’/Robledo Mountains Formation of the Hueco Group has mostly Neoproterozoic and Grenville-age zircon grains and was derived from Ancestral Rocky Mountain uplifts that did not have a large ~1.4-Ga component. The Aptian Hell-to-Finish Formation of the Bisbee Group has mostly Yavapai-aged zircon grains in the pre-1000-Ma age group, but younger Albian- and Campanian-age sandstones have mostly Grenville-age zircon grains. New data from the Albian Beartooth Quartzite indicate syndepositional volcanic grains at 102 Ma and support correlations with the Mojado Formation rather than the younger Dakota Sandstone. Archean zircon ages are rare overall in all of the strata in southern New Mexico, but zircon grains with ages of ~2.74 Ga are most abundant. These grains could have been derived from basement rocks in the Wyoming or Superior provinces, or recycled from sediment originally derived from those sources.
U-Pb ages were obtained from detrital zircon grains from Proterozoic, Ordovician, Devonian, Pennsylvanian, and Cretaceous clastic sedimentary rocks in southern New Mexico and are compared to previously published data from Proterozoic, Cambrian, Permian, and other Cretaceous strata. This provides the first combined data set from most of the known pre-Cenozoic clastic formations in southern New Mexico, albeit in a reconnaissance fashion. Proterozoic quartzite, conglomerate, and lithic sandstone yield mostly 1.65-Ga zircon ages that were derived from the Mazatzal province, with minor 1.8–1.7-Ga zircon ages from the Yavapai province. The Cambrian–Ordovician Bliss Sandstone is dominated by Grenville-age grains and Cambrian grains inferred to be locally derived. Newly acquired ages from the Ordovician Cable Canyon Sandstone are dominated by 1.7–1.6-Ga Mazatzal province zircon grains, whereas new data from the Devonian Percha Shale indicate subequal contributions from 1.7–1.6-Ga and ~1.4-Ga sources, along with 1.8–1.7-Ga zircon ages. Both of these formations likely had mainly distal sources as the Precambrian basement in the region was largely buried by older Paleozoic strata. New data from a sandstone in the Pennsylvanian La Tuna Formation show mostly Yavapai grains and minor Paleozoic zircon grains, including Cambrian zircon grains sourced from the nearby Florida Mountains landmass postulated to have been exposed during Pennsylvanian time. The Permian ‘Abo tongue’/Robledo Mountains Formation of the Hueco Group has mostly Neoproterozoic and Grenville-age zircon grains and was derived from Ancestral Rocky Mountain uplifts that did not have a large ~1.4-Ga component. The Aptian Hell-to-Finish Formation of the Bisbee Group has mostly Yavapai-aged zircon grains in the pre-1000-Ma age group, but younger Albian- and Campanian-age sandstones have mostly Grenville-age zircon grains. New data from the Albian Beartooth Quartzite indicate syndepositional volcanic grains at 102 Ma and support correlations with the Mojado Formation rather than the younger Dakota Sandstone. Archean zircon ages are rare overall in all of the strata in southern New Mexico, but zircon grains with ages of ~2.74 Ga are most abundant. These grains could have been derived from basement rocks in the Wyoming or Superior provinces, or recycled from sediment originally derived from those sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.