The hydrodynamic model, based on the strict conservation of momentum and continuity equations, can accurately simulate the distribution of a flow field. However, significant computing time and storage space requirements limit real-time prediction. Machine learning is well known for its fast computing speed and powerful learning ability, but its accuracy depends on an abundance of training data, hindering its wider use in locations without sufficient measurements. Application restrictions in data-deficient areas can be addressed through transfer learning, provided that two areas share common characteristics. In this study, a machine learning method based on a deep super-resolution convolutional neural network (DSRCNN) and transfer learning is proposed, validated, and applied to model two bend flows and one realistic test case. Firstly, the hydrodynamic model was established and validated against measured data. The validated model was considered to have the ability to generate real data and was used to generate a comprehensive data set for training and validating the machine learning model. Three different methods were compared and tested, with Realizable k-ε performing better than the others in predicting the outer bank flow distribution. DSRCNN was compared to a plain SRCNN (PSRCNN), as well as Bilinear, Nearest, and Bicubic methods, and the results showed that DSRCNN had the best performance. We compared Raw, RT, and TL methods, finding that the TL method performed the best overall. Therefore, the research results showed that the developed super-resolution convolutional neural network can provide more reliable predications and serve as an ideal tool for simulating flow field distribution in bends.