An analytical approach to addressing the implications of nuclear power plant shift sizing is needed as an augmentation to the classical empirical approach. The research reported in this paper was to evaluate the feasibility and validity of one potential analytical approach as a means of evaluating the consequences of crew reduction on crew performance in a nuclear power plant setting. The approach selected for analysis was task network modeling and simulation using a tool named Micro Saint. Task network modeling allows the human factors engineer to extend the information from a task analysis and generate a computer simulation of crew performance that can predict critical task times and error rates. Through modeling, the current and proposed processes can be evaluated and analyzed in order to understand, identify, and test opportunities for process improvement or reengineering. For this effort, models of a conventional nuclear power plant during four extremely demanding scenarios were developed. Task analysis and timing data were collected at the Imatran Voima Nuclear Power Plant at Loviisa, Finland. The task analyses were collected over a two week period by interviewing reactor operators, reviewing procedures, and conducting walk-throughs. We then refined the models and incorporated workload modeling constructs. At the completion of the modeling effort, the models were executed and the data collected were used to predict crew performance in varying staffing conditions.