Hereditary ophthalmopathy is a well-described threat to human visual health affecting millions of people. Gene therapy for ophthalmopathy has received widespread attention with the increasing understanding of pathogenic genes. Effective and safe delivery of accurate nucleic acid drugs (NADs) is the core of gene therapy. Efficient nanodelivery and nanomodification technologies, appropriate targeted genes, and the choice of drug injection methods are the guiding lights of gene therapy. Compared with traditional drugs, NADs can specifically change the expression of specific genes or restore the normal function of mutant genes. Nanodelivery carriers can improve targeting and nanomodification can improve the stability of NADs. Therefore, NADs, which can fundamentally solve pathogeny, hold great promise in the treatment of ophthalmopathy. This paper reviews the limitations of ocular disease treatment, discusses the classification of NADs in ophthalmology, reveals the delivery strategies of NADs to improve bioavailability, targeting, and stability, and summarizes the mechanisms of NADs in ophthalmopathy.