Throughout history, the yeast Saccharomyces cerevisiae has played a central role in human society due to its use in food production and more recently as a major industrial and model microorganism, because of the many genetic and genomic tools available to probe its biology. However S. cerevisiae has proven difficult to engineer to expand the carbon sources it can utilize, the products it can make, and the harsh conditions it can tolerate in industrial applications. Other yeasts that could solve many of these problems remain difficult to manipulate genetically. Here, we engineer the thermotolerant yeast Kluyveromyces marxianus to create a new synthetic biology platform. Using CRISPR-Cas9 mediated genome editing, we show that wild isolates of K. marxianus can be made heterothallic for sexual crossing. By breeding two of these mating-type engineered K. marxianus strains, we combined three complex traitsthermotolerance, lipid production, and facile transformation with exogenous DNA-into a single host. The ability to cross K. marxianus strains with relative ease, together with CRISPR-Cas9 genome editing, should enable engineering of K. marxianus isolates with promising lipid production at temperatures far exceeding those of other fungi under development for industrial applications. These results establish K. marxianus as a synthetic biology platform comparable to S. cerevisiae, with naturally more robust traits that hold potential for the industrial production of renewable chemicals.