Background: Arabinogalactan-proteins (AGPs) are structurally complex hydroxyproline-rich cell wall glycoproteins ubiquitous in the plant kingdom. AGPs biosynthesis involves a series of post-translational modifications including the addition of type II arabinogalactans to non-contiguous Hyp residues. To date, eight Hyp-galactosyltransferases (Hyp-GALTs; GALT2-GALT9) belonging to CAZy GT31, are known to catalyze the addition of the first galactose residues to AGP protein backbones and enable subsequent AGP glycosylation. The extent of genetic redundancy, however, remains to be elucidated for the Hyp-GALT gene family. Results: To examine their gene redundancy and functions, we generated various multiple gene knock-outs, including a triple mutant (galt5galt8galt9), two quadruple mutants (galt2galt5galt7galt8, galt2galt5galt7galt9), and one quintuple mutant (galt2galt5galt7galt8galt9), and comprehensively examined their biochemical and physiological phenotypes. The key findings include: AGP precipitations with β-Yariv reagent showed that GALT2, GALT5, GALT7, GALT8 and GALT9 act redundantly with respect to AGP glycosylation in cauline and rosette leaves, while the activity of GALT7, GALT8 and GALT9 dominate in the stem, silique and flowers. Monosaccharide composition analysis showed that galactose was decreased in the silique and root AGPs of the Hyp-GALT mutants. The AGP profile of 25789 quintuple mutant stems indicated changes in AGP profiles compared to WT. Additionally, TEM analysis of 25789 quintuple mutant stems indicated cell wall defects coincident with the observed developmental and growth impairment in these Hyp-GALT mutants. Correlated with expression patterns, GALT2, GALT5, GALT7, GALT8, and GALT9 display equal additive effects on insensitivity to β-Yariv-induced growth inhibition, silique length, plant height, and pollen viability. Interestingly, GALT7, GALT8, and GALT9 contributed more to primary root growth and root tip swelling under salt stress, whereas GALT2 and GALT5 played more important roles in seed morphology, germination defects and seed set. Pollen defects likely contributed to the reduced seed set in these mutants. Conclusion: Additive and pleiotropic effects of GALT2, GALT5, GALT7, GALT8 and GALT9 on vegetative and reproductive growth phenotypes were teased apart via generation of different combinations of Hyp-GALT knock-out mutants. Taken together, the generation of higher order Hyp-GALT mutants demonstrate the functional importance of AG polysaccharides decorating the AGPs with respect to various aspects of plant growth and development.