Abstract:Duchenne Muscular Dystrophy (DMD), a severe hereditary disease, affecting 1 boy out of 3500, mainly results from the deletion of one or more exons leading to a reading frame shift of the DMD gene that abrogates dystrophin protein synthesis. We used the Cas9 of Staphylococcus aureus (SaCas9) to edit the human DMD gene.Pairs of sgRNAs were meticulously chosen to induce a genomic deletion to not only restore the reading frame but also produced a dystrophin protein with normally phased spectrin-like repeats. The f… Show more
“…This line was used to test CRISPR/Cas9 genome editing complexes for reframing in exons 51 and 53 during lentiviral delivery [90]. AAV9 double SaCas9 (Staphylococcus aureus Cas9 ortholog) and guide mix was tested for deletion with borders within exons 47 and 58 for himeric exon formation [91]. Later, another mouse model with a deletion of exon 52, ∆52, was obtained using CRISPR/Cas9 genome editing system [92].…”
Section: Animal Models To Test Precision Medicine Approachesmentioning