Nonuniform distribution (NUD) of perfusion on single photon emission computed tomography (SPECT) is caused by impaired perfusion-related fluctuations of the functional volume (FFV). It was determined if digital analysis of NUD in each hemi-lung damaged by chronic obstructive pulmonary disease (COPD) could improve the whole lung impairment assessment. We examined 665 subjects and 8 controls by SPECT. The basic whole lung SPECT volume was defined at 10% of maximum whole lung count cutoff threshold (T h). For the whole lung and each hemi-lung, the 10% T h width volume, FFV rate, and misfit from the control were calculated at every T h width number (n) from 1 to 9 for every additional 10% T h from 10 to 100%. The misfit value integrated from 1 to 9 of n was defined by 3 NUD indices: D, whole lung NUD index; D rl , the index for the sum of each hemi-lung NUD; and D (I) , the NUD index with every interpolating pattern in which FFV rates of hemi-lungs comprised negative and positive value at the same n. D rl index was the sum of D and D (I) indices in all patients. D rl and D indices significantly increased in pulmonary disease subjects relative to those of the normal group and non-pulmonary disease subjects. D rl and D indices increased in COPD subjects. Progressive COPD subjects had larger D rl index values and "diffuse and even" hemi-lung impairment. The three indices quantizing FFV itself leading to NUD helped to digitally evaluate the degree of lung impairment of perfusion. Clinically, it is expected that the NUD indices and images obtained by SPECT, which visually and digitally show the pathological fluctuations in perfusion caused by lung impairment, will be able to provide specific and useful information for improving treatment and/or care of subjects with COPD.