Several basic problems of the theory of quantum phase transitions are reviewed. The effect of the quantum correlations on the phase transition properties is considered with the help of basic models of statistical physics. The effect of quenched disorder on the quantum phase transitions is also discussed. The review is performed within the framework of the thermodynamic scaling theory and by the most general methods of statistical physics for the treatment of phase transitions: general lengthscale arguments, exact solutions, mean field approximation, Hubbard-Stratonovich transformation, Feynman path integral approach, and renormalization group in the field theoretical variant. Some new ideas and results are presented. Outstanding theoretical problems are mentioned.