Boron implantation with in-situ dynamic annealing is used to produce highly conductive sub-surface layers in type IIa (100) diamond plates for the search of a superconducting phase transition. Here we demonstrate that high-fluence MeV ionimplantation, at elevated temperatures avoids graphitization and can be used to achieve doping densities of 6 at.%. In order to quantify the diamond crystal damage associated with implantation Raman spectroscopy was performed, demonstrating high temperature annealing recovers the lattice. Additionally, low-temperature electronic transport measurements show evidence of charge carrier densities close to the metal-insulator-transition. After electronic characterization, secondary ion mass spectrometry was performed to map out the ion profile of the implanted plates. The analysis shows close agreement with the simulated ion-profile assuming scaling factors that take into account an average change in diamond density due to device fabrication. Finally, the data show that boron diffusion is negligible during the high temperature annealing process. a)