This paper proposes a varactor-based circuit technique intended for amplitude and phase control, with improved linearity in the presence of parasitic capacitances and parasitic inductances. The mechanism causing linearity degradation in an anti-series varactor network that includes significant parasitic elementsa key aspect that, to our knowledge, has never been reportedis first studied using an analytical approach based on multi-tone excitation. It is demonstrated that simply optimizing the ratio of diode sizes is insufficient to circumvent this linearity degradation. The underlying linearity degradation concept serves as the basis for the introduction of a modified anti-series controllable capacitance, followed by a design and practical implementation. Experimental validations with multi-tone and modulated signals demonstrate improved linearity performances with respect to the state-of-the-art when parasitic capacitances and inductances are significant. Moreover, it is shown that the complete varactor-based circuit topology proposed here, which uses the proposed modified anti-series controllable capacitance in conjunction with a secondharmonic trap filter, constitutes a very attractive alternative to the state-of-the-art anti-series/anti-parallel topology, since it reduces the required number of diodes by a factor of 2. Measurements on discretecomponent designs operating at 3.6GHz, hence with significant parasitic effects, demonstrate that the proposed circuit topology improves the 3 rd order intermodulation distortion levels by 10.6dB and 6.6dB at output powers of 10dBm and 18dBm respectively, in comparison with the state-of-the-art topology. Measurements with a 16QAM modulated signal also show 3.9dB improvement in ACPR at 18dBm. These performances constitute improved state-of-the-art results in anti-series hyper-abrupt varactor-based electronic control.