Whiskering is a spontaneous filamentary growth of material, and it is a major long-term reliability issue affecting microelectronic packages comprising Sn plating and Sn-rich solders. In particular, whisker growth out of Sn-plated surfaces has been studied extensively in recent years due to the advent of next-generation, environment-friendly, Pb-free microelectronic packaging. Here, we review this scientifically challenging and technologically important problem, especially in the light of relatively new insights gained in the recent past, intending to provide a quick overview of the important results and stimulating future studies. In particular, we discuss the mechanisms of whisker growth by critically examining the roles of stress and its regeneration, oxide layer, diffusion conduits, and crystal anisotropy in creating conditions conducive for whiskering. We also discuss the recent proposals for effectively mitigating whisker growth in Sn coatings. Finally, an outlook is provided, with details of important unresolved issues related to whisker growth.