Nesta tese exploramos a termodinâmica e criticalidade de um sistema de osciladores de fase sob ação de ruídos aditivos e multiplicativos. O ruído multiplicativo é controlado por um acoplamento de ruído que pode amplificar ou reduzir o estado de sincronização do sistema. Isto nos permite caracterizar fases distintas no sistema que designamos como fase sincronizada e fase parasincronizada, em analogia com o magnetismo. Neste formalismo, a densidade de fase estacionária, parâmetro de ordem, energia livre, entropia, energia interna, calor específico e susceptibilidade do modelo são determinadas, no equilíbrio termodinâmico, precisamente. Baseando-se no conceito de campo de sincronização, formulamos a susceptibilidade e a relação de flutuação-dissipação para o sistema. A fase sincronizada apresenta uma região de anomalia interessante com susceptibilidade negativa, muito similar ao que acontece em líquidos complexos. Além disso, o comportamento crítico do sistema é investigado sistematicamente e os quatro expoentes críticos principais, que estão de acordo com as leis de escala de Rushbrooke e Widom, são obtidos pela primeira vez.