Lipid rafts are nanoscopic assemblies of sphingolipids, cholesterol, and specific membrane proteins that contribute to lateral heterogeneity in eukaryotic membranes. Separation of artificial membranes into liquid-ordered (Lo) and liquid-disordered phases is regarded as a common model for this compartmentalization. However, tight lipid packing in Lo phases seems to conflict with efficient partitioning of raft-associated transmembrane (TM) proteins. To assess membrane order as a component of raft organization, we performed fluorescence spectroscopy and microscopy with the membrane probes Laurdan and C-laurdan. First, we assessed lipid packing in model membranes of various compositions and found cholesterol and acyl chain dependence of membrane order. Then we probed cell membranes by using two novel systems that exhibit inducible phase separation: giant plasma membrane vesicles [Baumgart et al. (2007) Proc Natl Acad Sci USA 104:3165-3170] and plasma membrane spheres. Notably, only the latter support selective inclusion of raft TM proteins with the ganglioside GM1 into one phase. We measured comparable small differences in order between the separated phases of both biomembranes. Lateral packing in the ordered phase of giant plasma membrane vesicles resembled the Lo domain of model membranes, whereas the GM1 phase in plasma membrane spheres exhibited considerably lower order, consistent with different partitioning of lipid and TM protein markers. Thus, lipid-mediated coalescence of the GM1 raft domain seems to be distinct from the formation of a Lo phase, suggesting additional interactions between proteins and lipids to be effective.generalized polarization value ͉ giant unilamellar vesicle ͉ membrane organization ͉ lipid sorting ͉ lipid raft T he lipid raft hypothesis postulates that selective interactions among sphingolipids, cholesterol, and membrane proteins contribute to lateral membrane heterogeneity (1). A tenet of the model is that small, dynamic cholesterol-sphingolipid-enriched assemblies can be induced to coalesce into larger, more stable structures through clustering of domain components (2). Although experimental data support cholesterol-dependent nano-scale membrane heterogeneity (3-8) and selective domain formation upon raft cross-linking (9-12), the mechanisms that govern such associations in cell membranes remain unclear.On the molecular level, a key feature that is thought to contribute to raft assembly is the propensity of cholesterol to pack tightly with saturated acyl chains of lipids causing them to adopt an extended conformation (13,14). In multi-component model membranes (n Ͼ 2), this interaction can lead to microscopically separate fluid membrane phases: the liquid-ordered (Lo) phase, enriched in saturated (sphingo-)lipids and cholesterol in a highly condensed state, and the liquid-disordered (Ld) phase, enriched in unsaturated glycerophospholipid in a disordered state (15)(16)(17).Several features of the Lo phase in model membranes correspond to the predicted properties of lipid rafts in cel...