Resumen En este artículo se considera un sistema Hamiltoniano dado por
(t)) = ∇F (t, u(t)), a.e t ∈ [0, T ] (0.1)u(0) = u(T ) = 0.
Abstract
In this paper we consider the fractional Hamiltonian system given bywhere
Keywords. Fractional calculus, fractional derivatives, fractional Hamiltonian system, boundary value problem ------------------------
Introduction.Fractional order models can be found to be more adequate than integer order models in some real world problems as fractional derivatives provide an excellent tool for the description of memory and hereditary properties of various materials and processes. The mathematical modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electro dynamics of complex medium, polymer rheology, etc. involves derivatives of fractional order. As a consequence, the subject of fractional differential equations is gaining more importance and attention. There has been significant development in ordinary and partial differential equations involving both Riemann-Liouville and Caputo fractional derivatives.