The human microbiome comprises an ample set of organisms that inhabit and interact within the human body, contributing both positively and negatively to our health. In recent years, several research groups have described the presence of microorganisms in organs or tissues traditionally considered as ‘sterile’ under healthy and pathological conditions. In this sense, microorganisms have been detected in several types of cancer, including those in ‘sterile’ organs. But how can the presence of microorganisms be detected? In most studies, 16S and internal transcribed spacer (ITS) ribosomal DNA (rDNA) sequencing has led to the identification of prokaryotes and fungi. However, a major limitation of this technique is that it cannot distinguish between living and dead organisms. RNA‐based methods have been proposed to overcome this limitation, as the shorter half‐life of the RNA would identify only the transcriptionally active microorganisms, although perhaps not all the viable ones. In this sense, metaproteomic techniques or the search for molecular metabolic signatures could be interesting alternatives for the identification of living microorganisms. In summary, new technological advances are challenging the notion of ‘sterile’ organs in our body. However, to date, evidence for a structured living microbiome in most of these organs is scarce or non‐existent. The implementation of new technological approaches will be necessary to fully understand the importance of the microbiome in these organs, which could pave the way for the development of a wide range of new therapeutic strategies.