a b s t r a c tThe palladized cell (Pd-cell) could be used as an efficient catalyst in catalyzing the degradations of a wide variety of environmental contaminants. Nevertheless, when the Pd NPs associate with the bacteria, the catalytic activity likely significantly affected by the biomass. Quantitative indicators that characterize of Pd-cell are necessary and little attention has been paid to investigate how the catalytic efficiency of Pdcell is affected by the size and distribution of Pd NPs. To fill this gap, we explored the roles of the abovementioned key factors on the performance of Pd-cell in catalyzing the degradations of two aromatic contaminants (nitrobenzene and p-chlorophenol) in two commonly used scenarios: (1) using Pd-cell as suspended catalyst in solution and (2) using Pd-cell as electrocatalyst directly coated on electrode. In scenario (1), the relationship of exposing area to Pd particle size and distribution factors was established. Based on theoretical estimation and catalytic performance analysis, the results indicated that adjusting the exposing area to a large value (9.3 ± 0.1 Â 10 5 nm 2 mg À1 Pd) was extremely effective for improving the catalytic activity of Pd-cell used as a suspension catalyst. In scenario (2), our results showed that the best electrocatalytic performances were achieved on the electrode decorated with Pd-cells with the largest NP size (54.3 ± 16.4 nm), which exerted maximum electrochemical active surface area (10.6 m 2 g À1 ) as well as favorable conductivity. The coverage of deposited Pd NPs (>95%) on the cell surface played a crucial role in boosting the conductivity of biocatalyst, thus determining the possibility of Pd-cell as an efficient electrocatalyst. The findings of this study provide a guidance for the synthesis and application of Pd-cell, which enables the design of Pd-cell to be suitable for different catalysis systems with high catalytic performance.