Background
To evaluate the diagnostic value of MR-derived CT-like images and simulated radiographs compared with conventional radiographs in patients with suspected shoulder pathology.
Methods
3 T MRI of the shoulder including a 3D T1-weighted gradient echo sequence was performed in 25 patients (mean age 52.4 ± 18 years, 13 women) with suspected shoulder pathology. Subsequently a cone-beam forward projection algorithm was used to obtain intensity-inverted CT-like images and simulated radiographs. Two radiologists evaluated the simulated images separately and independently using the conventional radiographs as the standard of reference, including measurements of the image quality, acromiohumeral distance, critical shoulder angle, degenerative joint changes and the acromial type. Additionally, the CT-like MR images were evaluated for glenoid defects, subcortical cysts and calcifications. Agreement between the MR-derived simulated radiographs and conventional radiographs was calculated using Cohen’s Kappa.
Results
Measurements on simulated radiographs and conventional radiographs overall showed a substantial to almost perfect inter- and intra-rater agreement (κ = 0.69–1.00 and κ = 0.65–0.85, respectively). Image quality of the simulated radiographs was rated good to excellent (1.6 ± 0.7 and 1.8 ± 0.6, respectively) by the radiologists. A substantial agreement was found regarding diagnostically relevant features, assessed on Y- and anteroposterior projections (κ = 0.84 and κ = 0.69 for the measurement of the CSA; κ = 0.95 and κ = 0.60 for the measurement of the AHD; κ = 0.77 and κ = 0.77 for grading of the Samilson-Prieto classification; κ = 0.83 and κ = 0.67 for the grading of the Bigliani classification, respectively).
Conclusion
In this proof-of-concept study, clinically relevant features of the shoulder joint were assessed reliably using MR-derived CT-like images and simulated radiographs with an image quality equivalent to conventional radiographs. MR-derived CT-like images and simulated radiographs may provide useful diagnostic information while reducing the amount of radiation exposure.