The criticality type eigenvalues of the one-speed transport equation in a homogeneous slab with anisotropic scattering and Marshak boundary conditions have been studied. The scattering function is assumed to be a combination of linearly anisotropic and strongly forward-backward scattering. When the forward and backward scattering completely dominate over the 'ordinary' scattering, or the thickness of the slab approaches zero, the highly peaked angular flux at the central point of the slab was expressed by finite width delta functions. Using the finite width delta functions to analyse the high-order truncation error of the angular flux we could accurately obtain results with a low-order approximation. Numerical results for critical eigenvalues are obtained and tabulated for different scattering parameters including the extreme cases, while the standard spherical harmonics method gets a singularity.