We construct optimal Hardy weights to subcritical energy functionals h associated with quasilinear Schrödinger operators on infinite graphs. Here, optimality means that the weight w is the largest possible with respect to a partial ordering, and that the corresponding shifted energy functional $$h-w$$
h
-
w
is null-critical. Moreover, we show a decay condition of Hardy weights in terms of their integrability with respect to certain integral weights. As an application of the decay condition, we show that null-criticality implies optimality near infinity. We also briefly discuss an uncertainty-type principle, a Rellich-type inequality and examples.