The coronavirus disease 2019 (COVID-19) pandemic, caused by Severe Acute Respiratory Syndrome (SARS)-CoV-2, continues to burden medical institutions around the world by increasing total hospitalization and Intensive Care Unit (ICU) admissions. A better understanding of symptoms, comorbidities and medication used for pre-existing conditions in patients with COVID-19 could help healthcare workers identify patients at increased risk of developing more severe disease. Here, we have used self-reported data (symptoms, medications and comorbidities) from more than 3 million users from the COVID-19 Symptom Tracker app12 to identify previously reported and novel features predictive of patients being admitted in a hospital setting. Despite previously reported association between age and more severe disease phenotypes, we found that patient's age, sex and ethnic group were minimally predictive when compared to patient's symptoms and comorbidities. The most important variables selected by our predictive algorithm were fever, the use of immunosuppressant medication, mobility aid, shortness of breath and fatigue. It is anticipated that early administration of preventative measures in COVID-19 positive patients (COVID+) who exhibit a high risk of hospitalization signature may prevent severe disease progression.