Food security is the topmost priority on the global agenda. Accurate agricultural statistics (i.e., cropped area) are essential for decision making and developing appropriate programs to achieve food security. However, derivation of these essential agricultural statistics, especially in developing countries, is fraught with many challenges including financial, logistical and human capacity limitations. This study investigated the use of fractional cover approaches in mapping cropland area in the heterogeneous landscape of West Africa. Discrete cropland areas identified from multi-temporal Landsat data were upscaled to MODIS resolution using random forest regression. Producer's accuracy and user's accuracy of the cropland class in the Landsat scale analysis averaged 95% and 94%, respectively, indicating good separability between crop and non-crop land. Validation of the fractional cropland cover map at MODIS resolution (MODIS_FCM) revealed an overall mean absolute error of 19%. Comparison of MODIS_FCM with the MODIS land cover product (e.g., MODIS_LCP) demonstrate the suitability of the proposed approach to cropped area estimation in smallholder dominant heterogeneous landscapes over existing global solutions. Comparison with official government statistics (i.e., cropped area) revealed variable levels of agreement and partly enormous disagreements, which clearly indicate the need to integrate remote sensing approaches and ground based surveys conducted by agricultural ministries in improving cropped area estimation. The recent availability of a wide range of open access remote sensing data is expected to expedite this integration and contribute missing information urgently required for regional assessments of food security in West Africa and beyond.