Crop Recommendation Predictive Analysis using Ensembling Techniques
Muhammad Umar Abdullahi,
Morufu Olalere,
Gilbert I. O. Aimufua
et al.
Abstract:Crop recommendation systems play a crucial role in modern agriculture by aiding farmers in making well-informed choices to optimize crop yield and resource utilization. Ensemble learning approaches can significantly improve the effectiveness of crop recommendation systems. To achieve this, multiple forecasts are combined from various models. In this paper, a complete Machine Learning Pipeline is used to evaluate the performance of ensemble learning models in crop recommendation tasks. A diverse dataset is used… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.