Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Accurate and early crop-type maps are essential for agricultural policy development and food production assessment at regional and national levels. This study aims to produce a crop-type map with acceptable accuracy and spatial resolution in northern Mongolia by optimizing the combination of Sentinel-1 (S1) and Sentinel-2 (S2) images with the Google Earth Engine (GEE) environment. A total of three satellite data combination scenarios are set, including S1 alone, S2 alone, and the combination of S1 and S2. In order to avoid the impact of data gaps caused by clouds on crop classification, this study reconstructed the time series of S1 and S2 with a 10-day interval using the median composite method, linear moving interpolation, and Savitzky–Golay (SG) filter. Our results indicated that crop-type classification accuracy increased with the increase in data length to all three data combination scenarios. S2 alone has higher accuracy than S1 alone and the combination of S1 and S2. The crop-type map with the highest accuracy was generated using S2 data from 150 days of the year (DOY) (11 May) to 260 DOY (18 September). The OA and kappa were 0.93 and 0.78, respectively, and the F1-score for spring wheat and rapeseed were 0.96 and 0.80, respectively. The classification accuracy of the crop increased rapidly from 210 DOY (end of July) to 260 DOY (August to mid-September), and then it remained stable after 260 DOY. Based on our analysis, we filled the gap of the crop-type map with 10 m spatial resolution in northern Mongolia, revealing the best satellite combination and the best period for crop-type classification, which can benefit the achievement of sustainable development goals 2 (SDGs2).
Accurate and early crop-type maps are essential for agricultural policy development and food production assessment at regional and national levels. This study aims to produce a crop-type map with acceptable accuracy and spatial resolution in northern Mongolia by optimizing the combination of Sentinel-1 (S1) and Sentinel-2 (S2) images with the Google Earth Engine (GEE) environment. A total of three satellite data combination scenarios are set, including S1 alone, S2 alone, and the combination of S1 and S2. In order to avoid the impact of data gaps caused by clouds on crop classification, this study reconstructed the time series of S1 and S2 with a 10-day interval using the median composite method, linear moving interpolation, and Savitzky–Golay (SG) filter. Our results indicated that crop-type classification accuracy increased with the increase in data length to all three data combination scenarios. S2 alone has higher accuracy than S1 alone and the combination of S1 and S2. The crop-type map with the highest accuracy was generated using S2 data from 150 days of the year (DOY) (11 May) to 260 DOY (18 September). The OA and kappa were 0.93 and 0.78, respectively, and the F1-score for spring wheat and rapeseed were 0.96 and 0.80, respectively. The classification accuracy of the crop increased rapidly from 210 DOY (end of July) to 260 DOY (August to mid-September), and then it remained stable after 260 DOY. Based on our analysis, we filled the gap of the crop-type map with 10 m spatial resolution in northern Mongolia, revealing the best satellite combination and the best period for crop-type classification, which can benefit the achievement of sustainable development goals 2 (SDGs2).
Abstract. Agriculture is one of the most critical sectors of the Mongolian economy. In Mongolia, land degradation is increasing in the cropland region, especially in a cultivated area. The country has challenges to identify new croplands with sufficient capacity for cultivation, especially for local decision-makers. GIS applications tremendously help science in making land assessments. This study was carried out in Bornuur soum, Mongolia. The goal of this study to estimate that best suitable area for supporting crop production in Bornuur soum, using a GIS-based multi-criteria analysis (MCA) and remote sensing. GIS-based multi-criteria analysis (MCA) has been widely used in land suitability analyses in many countries. In this research, the GIS-based spatial MCA among the Analytical Hierarchy Process (AHP) method has employed. The approach was enhanced for each criterion which as soil, topography and vegetation. The opinions of agronomist experts and a literature review helped in identifying criteria (soil data, topography, water and vegetation data) that are necessary to determine areas suitable for crops. The detailed cropland suitability maps indicate that 46.12 % is highly suitable for cropland, 34.68 % is moderate suitable, 13.64 % is marginal suitable and 5.56 % is not suitable. The MCA and AHP tools play an essential role in the multi-criteria analysis. Therefore, the results of these methods allow us to estimate an appropriate area for cultivation in Bornuur soum, Tuv province. The crop suitability method implies significant decisions on different levels and the result will be used for cropland management plan to make a decision. It is an integral role in agricultural management and land evaluation. Future research should further develop this method by including socio-economic (potential citizens for agriculture, current crop growth, water resource, etc.) and environmental variables (rainfall, vegetation types, permafrost distribution, etc.) to obtain specific results. However, it could be also be applied for a single crop type (mainly barley, wheat and potato) in Mongolia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.