Presently, on-orbit calibration methods have several problems, such as low calibration accuracy and broken traceability links, so an urgent need exists to unify traceable and high-precision on-orbit radiometric calibration loads as benchmarks for cross-transfer radiometric calibration. Considering the deficiencies of current on-orbit calibration, this paper proposes adjusting the size of the variable diaphragm at the entrance pupil and the integration time to attain large dynamic attenuation, converting the radiometric calibration into absolute geometric calibration of the attenuation device, and realizing a self-calibrating real entrance pupil imaging spectrometer (SCREPIS) that can be directly used to view the Earth and the Sun and quickly obtain apparent reflectance data. An initial structural design method based on the distance between individual mirrors is proposed according to the instrument design requirements. The design of a real entry pupil image-side telecentricity off-axis three-reflector front optical system with a 7° field of view along the slit direction, a 3.7 systematic F-number, and a 93 mm focal length is finally realized, and the system image plane energy is verified to change proportionally to the variable diaphragm area. Finally, the front system and rear Offner optical system are jointly simulated and optically designed. The system provides instrumental support for cross-calibration and theoretical support and a technical basis for planning space-based radiation references.