“…We compare our method with 17 existing methods, including four deep learning RGBD SOD methods (i.e., S2MA , BBSnet (Fan et al, 2020b), A2dele (Piao et al, 2020) and DMRA (Piao et al, 2019)), and three traditional RGBT SOD methods (i.e., MTMR (Li et al, 2018), M3S-NIR (Tu et al, 2019) and SGDL (Tu et al, 2020)), and ten deep learning based RGBT SOD methods (i.e., ADF (Tu et al, 2022b), MIDD (Tu et al, 2021), APNet Zhou et al (2022b), ECFFNet (Zhou et al, 2022a), CSRNet (Huo et al, 2022a), CGFNet (Wang et al, 2022), MIA DPD (Liang et al, 2022), OSRNet (Huo et al, 2022b), DCNet (Tu et al, 2022a), CCFENet (Liao et al, 2022)). Different from deep learning based RGBD and RGBT SOD methods, our proposed method separates the model into three subnetworks which aim to improve Precision, Recall and Fm score of the saliency maps respectively.…”