The Chenghai Fault in the Chuan–Dian block terminates at the northwestern segment of the Red River Fault, and is a significant seismogenic structure. The kinematic evolution of this fault should be closely related to the regional tectonic deformation. However, it is difficult to obtain information on structural deformation of the Chenghai Fault due to the large amount of precipitation and well-developed vegetation. The Chenghai normal faulting may drive drainage reorganization in this region, which provides a new perspective for reconstructing and evaluating the tectonic history. High-resolution digital elevation models (DEM) obtained by remote sensing greatly facilitate the study of drainage evolution and active tectonics. We use two methods (χ-plot and Gilbert metrics) to measure the drainage divide stability based on the ALOS DEM (12.5 m resolution) and further reproduce the drainage evolution process in response to the asymmetric uplift by numerical modeling. The results show that the Chenghai–Jinsha drainage divide, hosted by the footwall block of the Chenghai Fault, is migrating westward (away from the Chenghai Fault) and will continue moving ~2.2–3.5 km to reach a steady state. Its migration is controlled by the Chenghai normal faulting. The Chenghai–Jinsha drainage divide formed close to the Chenghai Fault’s surface trace and continues to migrate westward in response to the asymmetric uplift. It only took a few million years for the Chenghai–Jinsha drainage divide to migrate to its current location based on the numerical modeling. The restoration of the drainage reorganization implies that the Chenghai Fault initiated in the Pliocene, which probably results from kinematic reversal along the Red River Fault.