Proceedings of the 1st International Workshop on Multimedia AI Against Disinformation 2022
DOI: 10.1145/3512732.3533582
|View full text |Cite
|
Sign up to set email alerts
|

Cross-Forgery Analysis of Vision Transformers and CNNs for Deepfake Image Detection

Abstract: Deepfake Generation Techniques are evolving at a rapid pace, making it possible to create realistic manipulated images and videos and endangering the serenity of modern society. The continual emergence of new and varied techniques brings with it a further problem to be faced, namely the ability of deepfake detection models to update themselves promptly in order to be able to identify manipulations carried out using even the most recent methods. This is an extremely complex problem to solve, as training a model… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
8
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 18 publications
(10 citation statements)
references
References 26 publications
1
8
0
1
Order By: Relevance
“…Table 3 lists all the papers selected for this work, the year of publication and the type of publication. A vision transformer for emphysema classification using CT images 2021 Journal [12] Comparing Vision Transformers and Convolutional Nets for Safety Critical Systems 2022 Conference [13] Convolutional Nets Versus Vision Transformers for Diabetic Foot Ulcer Classification 2022 Conference [14] Convolutional Neural Network (CNN) vs Vision Transformer (ViT) for Digital Holography 2022 Conference [15] Cross-Forgery Analysis of Vision Transformers and CNNs for Deepfake Image Detection 2022 Conference [16] Traffic Sign Recognition with Vision Transformers 2022 Conference [17] An improved transformer network for skin cancer classification 2022 Journal…”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…Table 3 lists all the papers selected for this work, the year of publication and the type of publication. A vision transformer for emphysema classification using CT images 2021 Journal [12] Comparing Vision Transformers and Convolutional Nets for Safety Critical Systems 2022 Conference [13] Convolutional Nets Versus Vision Transformers for Diabetic Foot Ulcer Classification 2022 Conference [14] Convolutional Neural Network (CNN) vs Vision Transformer (ViT) for Digital Holography 2022 Conference [15] Cross-Forgery Analysis of Vision Transformers and CNNs for Deepfake Image Detection 2022 Conference [16] Traffic Sign Recognition with Vision Transformers 2022 Conference [17] An improved transformer network for skin cancer classification 2022 Journal…”
Section: Resultsmentioning
confidence: 99%
“…The authors in [15] performed an analysis between ViT and CNN models aimed at detecting deepfake images. The experiment consisted in using the ForgeryNet dataset with 2.9 million images and 220 thousand video clips, together with three different image manipulation techniques, where they tried to train the models with real and manipulated images.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Their method manages to use a reduced number of parameters while keeping a high accuracy on the predictions. Coccomini et al [3] focus on the challenge of generalizing deepfake detection approaches so that they do not remain tied to one or more specific deepfake generation methods. The audio modality requires different approaches.…”
Section: Accepted Papersmentioning
confidence: 99%
“…Media syntetyczne wprowadzają tym samym nową broń do arsenału cyberzagrożeń. W sektorze energetycznym, złożonym i wrażliwym pod względem infrastruktury i ekonomicznej stabilności, tego rodzaju działania dezinformacyjne mogą prowadzić zarówno do zakłóceń operacyjnych, ale także utraty zaufania wśród interesariuszy oraz, w najbardziej ekstremalnych przypadkach, wywołania destabilizującego wpływu na całą gospodarkę i bezpieczeństwo państwa 6 . Niniejszy artykuł ma na celu analizę zagrożeń związanych z wykorzystaniem mediów syntetycznych, ze szczególnym uwzględnieniem wykorzystania mediów syntetycznych takich jak: techniki deepfake, w sektorze energetycznym Europy Wschodniej 7 .…”
unclassified