Electrical impedance tomography was used to monitor the movement of a fluorinated hydrocarbon DNAPL through a saturated porous medium within a laboratory column. Impedance measurements were made using a horizontal plane of twelve electrodes positioned at regular intervals around the centre of the column. A 2D inversion algorithm, which incorporated the cylindrical geometry of the column, was used to reconstruct resistivity and phase images from the measured data. Differential time-lapse images of DNAPL movement past the plane of electrodes were generated by the cell-bycell subtraction of resistivity and phase baseline models from those associated with the DNAPL release stage of the experiment.The DNAPL pulse was clearly delineated as resistive anomalies in the differential time-lapse resistivity images. The spatial extent of the resistive anomalies indicated that, in addition to vertical migration, some lateral spreading of the DNAPL had occurred. Residual contamination could be detected after quasi-static conditions were re-established. Residual DNAPL saturation was estimated from the resistivity model data by applying Archie's second equation. Despite significant measured phase changes due to DNAPL contamination, the differential phase images revealed only weak anomalies associated with DNAPL flow; these anomalies could be seen only in the initial stages of the experiment during peak flow through the plane of electrodes.