Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Confer 2021
DOI: 10.18653/v1/2021.acl-long.300
|View full text |Cite
|
Sign up to set email alerts
|

Cross-language Sentence Selection via Data Augmentation and Rationale Training

Abstract: This paper proposes an approach to crosslanguage sentence selection in a low-resource setting. It uses data augmentation and negative sampling techniques on noisy parallel sentence data to directly learn a cross-lingual embedding-based query relevance model. Results show that this approach performs as well as or better than multiple state-of-theart machine translation + monolingual retrieval systems trained on the same parallel data. Moreover, when a rationale training secondary objective is applied to encoura… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 42 publications
0
0
0
Order By: Relevance