An antibacterial superabsorbent polymer (SAP) was synthesized by grafting acrylic acid (AA) onto carboxymethyl cellulose (CMC) and mixing with silver particles, with N,NâČ-methylenebisacrylamide used as a crosslinker and potassium persulfate as an initiator. Silver nanoparticles were produced through the reaction between glucose and silver nitrate. The effects of the amount of silver nitrate added in the polymer on the swelling ratio were investigated and the maximum swelling ratio of the SAP loaded with silver particles in distilled water and in a 0.9 wt % NaCl solution reached 840 g/g and 71 g/g, respectively, when the silver nitrate added was 50 mg. The SAP was characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, energy dispersive spectrometry, transmission electron microscopy, and thermogravimetric analysis. Through these analysis methods, it could be seen that the acrylic acid was successfully grafted onto CMC, forming a three-dimensional network structure, with the successful production of silver nanoparticles with sizes ranging from 5 nm to 50 nm. Moreover, the antibacterial properties of the SAP loaded with silver nanoparticles against Staphylococcus aureus and Escherichia coli were investigated and the results show that they became more effective with increasing silver nitrate concentration. The obtained SAP can be useful in developing new antibacterial medical and public health supplies.