a b s t r a c tThe aim of the current work was to prepare and characterize a cellulose nanocrystal reinforced semi-interpenetrated network (SIPN) derived from polylactic acid (PLA) and polyurethane (PU) polymers. SIPN films were prepared using solvent casting from 1,4-dioxane solution. The morphology, mechanical and thermal properties of the neat SIPN and its nanocomposite were characterized. A novel dispersion method was used, for the first time, to disperse the CNCs into the polyol. This method led to well dispersed CNCs in the SIPN, and at 1 wt% CNC concentration, the elastic modulus of the nanocomposite was improved by 54% over an unreinforced SIPN. Additionally, the results indicated that the toughness of PLA, which is the main polymer phase, was improved. However, in the nanocomposite, CNCs formed a strong network and reinforced the PU phase, which resulted in a lower toughness of the final material. The storage modulus of the SIPN nanocomposite was higher than that of the neat PLA at temperatures higher than 55°C up to 100°C. This increase in thermomechanical properties indicates that the reinforced PU network in the PLA matrix can enhance the thermal behavior of material.