2020
DOI: 10.1002/asi.24373
|View full text |Cite
|
Sign up to set email alerts
|

Cross‐modal retrieval with dual multi‐angle self‐attention

Abstract: In recent years, cross‐modal retrieval has been a popular research topic in both fields of computer vision and natural language processing. There is a huge semantic gap between different modalities on account of heterogeneous properties. How to establish the correlation among different modality data faces enormous challenges. In this work, we propose a novel end‐to‐end framework named Dual Multi‐Angle Self‐Attention (DMASA) for cross‐modal retrieval. Multiple self‐attention mechanisms are applied to extract fi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
references
References 46 publications
0
0
0
Order By: Relevance